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LEmER TO THE EDITOR 

New path integral representation of the quantum mechanical 
propagator 

Marco Roncadelli 
INFN, Sezione di Pavia, Via A Bassi 6, 1-27100 Pavia, Ital) 

Received 2 March I992 

Abstract. A new path integral representation of the quantum mechanical propagator is 
proposed, which i s  even more intimately connected with classical mechanics than the 
Feynman path integral. The emergence of the semiclassical propagator is discussed in 
detail. It is argued that those paths which actually contribute in the new path integral have 
a very simple relation with the classical dynamical trajectories in configuration space. 

As is well known, the Feynman path integral representation of the quantum mechanical 
propagator has the form (Feynman and Hibbs 1965, Kleinert 1990, Schulman 1981) 

(x”, t”l x’, t ’) = ax( t )  8(  x” - x( t ” ) )  6 (  x’ - x( 1‘)) exp{(i/ h)S[ x( , ) I 3  (1) I 
where S[x(.)]:: denotes the classical action along a generic path x(t) 

I” 

S[x(.)]::- 1,. d r L ( x ( t ) , x ( f ) ,  1 ) :  

A large variety of quantum dynamical problems can be successfully handled by this 
strategy, which is receiving an ever growing interest. 

We shall he concerned throughout with the (non-relativistic) Lagrangian 

L ( x , x , t ) = ~ ~ , x , + + n , ( x , r ) x , - ~ ( x , t )  (3) 

describing a point particle 9’ (mass m, no spin) with configuration space U = BN. 
Still, all considerations presented in this letter can easily be generalized to the case 
U =(Riemann manifold) (Defendi and Roncadelli 1992a) as well as to the relativistic 
counterpan of Lagrangian (3) (Defendi and Roncadelli 1992b). 

An important remark often made in connection with equation (1) is that the 
Feynman path integral provides a very appealing link between classical and quantum 
dynamics, since the clossical action explicitly appears in equation (1). This circumstance 
permits a straightforward treatment of the semiclassical approximation via a stationary 
phase mechanism. Basically, what happens is that as h + O  the dominant contribution 
in (1) comes from paths close to the classical dynamical trajectory q( 1; x’, 1’; x”, t ” )  E A 

propagator can be evaluated in a simple manner and reads (Schulman 1981) 
jnining (x‘, :’) Yi!h (X”, !”). s!l!?dlrd Erg”!I!s !!?en imp!y !!?Et the semic!’ssicl! 

I 

0305-~70/92/160997+04$04.50 0 1992 IOP Publishing Ltd L997 



L998 Letter to the Editor 

with 

S(x”, t”;  x’, t ‘ ) = S [ q (  ’; x’, 1’;  x”, t ” ) ] : . .  ( 5 )  
Our aim is to point out that an alternative path integral representation of the quantum 
mechanical propagator exists, which is even more closely related to classical dynamics. 
As we are going to show, the new path integral representation holds 

where we have set (for notational simplicity) 

We stress that S(x, t )  in (6) is an arbitrary solution to the classical Hamilton-Jacobi 
equation associated with Lagrangian (3) 

t ) - n , ( x ,  t )  

Notice that the RHS of (6) does not (globally) depend on which specific solution S(x, t )  
is used (why this is possible will become clear later on). Generally speaking, S(x, t )  
is expected to be regular only over a certain finite time interval T, because of the 
existence of focal points in A (integrable systems are an exception) (Courant and 
Hilbert 1962). Accordingly, equation (6) makes sense only under the assumption 
It”- 1’1 < T. This is, however, not a real limitation. One can in fact compute (x”, t”1 x’, 1’ )  
first for I t”-  f ’ l  < T using (6). The latter result can next be triuially extended to arbitrary 
times thanks to the convolution property 

+m 

(x”, ~ ” I x ’ ,  t’) = dx”’(x”, f“lx”‘, t’”)(x”‘, t”‘(x’,  t’) (9) I-- 
since focal points in A disappear after quantization. 

(6) in a somewhat fancy way 
Let us now prove equation (6). We start by rewriting the second square bracket in 

t m [ x , ( t ) - V M t ) ,  I; [ S ( . ) 1 ) l 2  

= [ f m x , ( t ) x , ( t ) + n , ( x ( r ) ,  t ) x , ( t ) - W ( t ) ,  t)1 

which is nothing but an identity. We proceed by focusing our attention on the RHS of 
equation (IO). Clearly, the last bracket vanishes because of (7) and (8). Moreover, the 
first bracket is just Lagrangian (3) and tine second one is the totai time derivative of 
S(x, I ) .  Thus, (10) becomes 
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Finally, we insert (11) into (6). Then the time derivative of S(x(t), I )  yields a boundary 
term which precisely cancels the exponential prefactor. So what is left over turns out 
to coincide with the RHS of (1) (on account.of (2)). Observe that we have only been 
assuming that S(x, f) obeys (a), therefore (6 )  should be true for any such S(x, I ) .  0 

A question which arises quite naturally is how the semiclassical propagator emerges 
by taking equation ( 6 )  as starting point. As a preliminary step, we recall that once a 
particu!ar (arbitrary) In!egra! S(x, !) of ( 8 )  is known, a fami!y of trajectories in -44 is 
provided by the equation 

We denote by q ( t ;  x’, 1’; [S( . )I)  the solution to (12) controlled by S(x, f) with initial 
condition q ( t ’ )  =x’. Then q ( t ;  x’, f‘; [S(.)]) is just the classical dynamical trajectory 
of 9 i n  A selected by the initial data q( t ’ )  =x’,p(t’)=(VS)(x’, 1 ’ )  (Arnold 1978). In 
particular, corresponding to the following solution to (8) (Sudarshan and Mukunda 
1974) 

S(X, f )=S, (~ , t ) -S(x , f ;x” , t” )  (13) 

we get 

q ( t ; x ‘ , r ‘ ; [ S , ( . ) ] ) = q ( r ; x ’ , t ‘ ;  x”,t”). (14) 

We shall stick throughout to the choice S(x, t)  = S,(x, t ) ,  working (for simplicity) in 
one dimension. As usual, we parametrize the paths in ( 6 )  as 

x ( t )  = q ( t ;  x’, f’; [ S , ( . ) I ) + y ( f )  (15) 
so y ( t ’ )  = y ( f ” )  = O  (we are implicitly assuming I f “ -  t’l small enough so as to avoid 
focal points, hence the parametrization (15) is unique). Manifestly, even in the present 
situation the semiclassical approximation arises from the stationary phase mechanism 
(as applied to (6 ) ) .  Standard arguments then entail that the semiclassical propagator 
is given by 

(x”, f”lX’, f‘)sc 

i i  / i  

fi 
=exp(’S(x”, 1”; x’, t ’ )  ay(t)S(y(t“))S(y(t‘)) 

where the prime denotes differentiation with respect to x. The path integral in (16) 
can easily be computed by the shifting method (Felsager 1981), which leads to the result 

having set 

We proceed by considering the lacobi equation (Kleinert 1990, Zinn-Justin 1989) 

1 d2 1 
[df’ m 

-+-@”(q(t;~’,t’;x”,t”), I )  k ( t ) = O .  
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A well known fact about any solution to (19) is that the remarkable relation holds 
(Zinn-Justin 1989) 

m - a2s(x“, t“; x‘, 1’)  

k(r”)k( t ’ )  j;:df k( t ) - 2 - -  dx”ax’ 

One can check that w ( t )  actually obeys (19) with initial condition w ( t ’ )  = 1, thanks to 
(8) and (14). So equation (20) implies that (17) indeed coincides with (4). 

Although all (continuous) paths joining (x’, 1 ‘ )  with (x”, t ” )  seem to enter the 
Feynman path integral (l), only a certain subset of fractal paths with Hausdorff 
dimension 2 (namely for which A x ( t ) -  actually contribute (Feynman and 
Hibhs 1965)-they are the so-called Feynman paths. A very similar situation occurs 
for the new path integral (6) and those paths which actually contribute in (6) will be 
referred to as generalized Feynman paths. No connection is known to exist between 

Feynman paths have a very simple relation to the classical dynamical trajectories in 
A. Even though this issue will he discussed in great detail elsewhere (Roncadelli 
1992a), one can perhaps be convinced of this fact by simply noticing the very strong 
structural similarity between equation (12) and the exponent in the path integral (6). 

A more detailed discussion of the new path integral will be presented in a forth- 
coming paper (Roncadelli 1992h). 

The author would like to thank A Defendi for useful discussions. 

!he Feynman paths and !he c!aasica! dynamira! !rajcrtodes in 1. Yet, !hP generdizer! 
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